Профессиональные справочные системы для специалистов
27.11.2025
Найден способ добывать арктическую нефть, не растапливая вечную мерзлоту

Пока традиционные месторождения Западной Сибири постепенно истощаются, будущее российской нефтедобычи все больше связывают с новыми центрами - суровыми регионами Восточной Сибири и Арктики. Однако нефть в таких условиях напоминает скорее холодный деготь, чем текучее "черное золото" традиционных скважин. Чтобы заставить ее двигаться к скважине, требуется прогревать целые нефтяные залежи прямо в недрах земли, например, закачивая в них горячий пар. Но в условиях вечной мерзлоты этот процесс напоминает отопление дома с открытыми настежь окнами: большая часть тепла тратится впустую, при этом растапливая многолетнемерзлые породы. Это грозит обвалом скважины, поломкой оборудования и крупными экологическими авариями в уязвимых северных экосистемах. Решение нашли ученые Пермского Политеха, создавшие виртуальный двойник скважины с точностью прогноза 95%. Разработка позволит рассчитать идеальный режим температуры, которая растопит нефть, но сохранит мерзлоту - и защитит скважину от разрушения.

Статья опубликована в журнале "Научно-технический вестник Поволжья" № 5 2025 - https://ntvprt.ru/ru/archive-vypuskov.


При текущем уровне добычи рентабельных запасов нефти России хватит всего на 26 лет. Об этом заявил министр природных ресурсов и экологии Александр Козлов во время правительственного часа в Госдуме. Из 31 млрд тонн разведанных запасов экономически целесообразно извлекать лишь 13 млрд тонн, сосредоточенных в основном в традиционных регионах вроде Западной Сибири и Поволжья. При этом свыше 70% неразведанных ресурсов находятся в Арктике и зонах вечной мерзлоты, где добыча сопряжена с особыми сложностями. Без освоения этих месторождений страна уже в ближайшие десятилетия столкнется с резким падением добычи, что приведет к росту цен на топливо для населения и потере бюджетами важного источника доходов.


Основная проблема нефтедобычи на севере - это уникальная высоковязкая нефть. Чтобы поднять ее на поверхность, необходимо разогревать горную породу.


Самый эффективный метод - подача перегретого пара, который обеспечивает прогрев до температур 200-300°C, что позволяет ему нести больше тепловой энергии и не остывать при движении по скважине. Пар проникает в пласт и "растапливает" нефть прямо под землей, чтобы она могла подняться.


Для добычи высоковязкой нефти существуют и другие методы, но в условиях вечной мерзлоты каждый из них сталкивается с серьезными технологическими барьерами. Например, химические растворители требуют постоянных затрат и могут нанести вред экологии, а их эффект часто оказывается кратковременным. Внутрипластовое горение напоминает управление подземным пожаром - это плохо контролируемый процесс. Он чреват безвозвратной потерей части запасов и несет прямую угрозу безопасности: процесс может привести к резким выбросам пламени, разрушению скважин и возгоранию. Электрический нагрев потребляет колоссальные объемы энергии и экономически не оправдан для крупных месторождений. Механические методы, например, специализированные насосы, просто не справляются с экстремальной вязкостью нефти в таких условиях.


Пар остается наиболее практичным решением, потому что сочетает высокую эффективность прогрева с экономической доступностью. Это проверенная технология, которая позволяет равномерно прогреть большие объемы и не оставлять после себя вредных химических следов.


Однако и у пара есть серьезный побочный эффект. При движении по скважине он сильно нагревает все вокруг. Это тепло растапливает многолетнемерзлые породы - природный фундамент, который тысячелетиями обеспечивал прочность и стабильность грунта. Когда вечная мерзлота тает, исчезает естественная опора всего месторождения. Мерзлые породы теряют прочность, скважины деформируются и выходят из строя, что приводит к авариям и миллионным убыткам. До 30% тепла тратится впустую и вместо прогрева нефти уходит на оттаивание мерзлоты. Таяние грунта запускает цепную реакцию: проседают фундаменты зданий, нарушается водный баланс территорий, высвобождаются парниковые газы. Это создает угрозу для инфраструктуры всего региона и усиливает глобальное изменение климата, делая проблему не только производственной, но и общеэкологической.


Поэтому ключевая задача ученых - не отказываться от пара, а научиться использовать его максимально эффективно. Нужно доставлять тепло целенаправленно к нефтяному пласту, уменьшая его воздействие на просадку земли.


Сейчас для этого используют теплоизолированные лифтовые трубы (ТЛТ), которые также называют термокейсами. Эти многослойные конструкции работают по принципу термоса: между двумя стальными стенками размещают теплоизоляционный материал. При закачке пара в скважину такая изоляция предотвращает утечку тепла в окружающие мерзлые породы, благодаря чему он эффективно прогревает нефтяной пласт и не размораживает замерзший грунт.


Несмотря на эффективность термокейсов, при их использовании сохраняется серьезная проблема. Инженеры не могут заранее точно определить необходимый уровень теплоизоляции для разных скважин. Это приводит к двум крайностям: компании либо перестраховываются, неся дополнительные расходы на избыточную изоляцию, либо экономят, рискуя столкнуться с авариями из-за деформации мерзлоты.


Решение нашли ученые Пермского Политеха. Они создали виртуальный двойник скважины - математическую модель процессов тепломассопереноса в ТЛТ, которая прогнозирует распространение тепла в нефтяных скважинах, оборудованных термокейсами. Уникальность модели в том, что она впервые в мире создана как полноценная 3D-модель, которая точно рассчитывает распространение тепла через все слои скважины одновременно.


Ученые "перевели" на язык математики цепочку теплопередачи в скважине. Модель просчитывает весь путь теплового потока - от момента подачи пара по трубам до его взаимодействия с окружающими породами. Эта цифровая копия учитывает множество параметров одновременно. Она отслеживает, как материалы меняют свойства при нагреве и как тепло распространяется во времени, а также учитывает все уникальные особенности конструкции скважины и окружающего грунта.


"Эффективность модели проверяли на данных с Усинского месторождения в Республике Коми. Этот регион был выбран неспроста: там сочетаются вечная мерзлота, залежи вязкой нефти и проблемы с парафиновыми отложениями. Последние представляют особую сложность: при снижении температуры парафины в нефти затвердевают и оседают на стенках трубопроводов, уменьшая их диаметр, повышая давление в системе и создавая риск полной блокировки потока нефти", - рассказывает Дмитрий Пинягин, аспирант кафедры "Конструирование и технологии в электротехнике" ПНИПУ.


Результаты испытаний показали высокую точность математической модели во всех режимах работы скважины. В фоновом режиме (без подачи пара) расхождение между расчетами и фактическими данными составило менее 0,1% - практически идеальное совпадение.


В рабочих режимах точность тоже впечатляющая. В режиме пропитки - при умеренном нагреве до 143°C - расхождения не превысили 8%. В наиболее интенсивном режиме нагрева до 273°C модель показала хороший результат - 95% соответствия экспериментальным данным.


"Небольшие расхождения между расчетными и фактическими данными в рабочих режимах связаны с объективными производственными факторами. На реальном месторождении теплоизоляция постепенно теряет первоначальные характеристики, а в местах соединения труб неизбежно возникают дополнительные теплопотери, которые на данном этапе не были учтены в математической модели", - поясняет Наталия Труфанова, заведующая кафедрой "Конструирование и технологии в электротехнике" ПНИПУ, доктор технических наук.


Математическая модель пермских ученых позволяет точно прогнозировать распределение тепла в скважине и определять оптимальные параметры ее работы: необходимую температуру и расход пара, а также подбирать трубы с требуемыми теплоизоляционными характеристиками. Модель использует реальные данные о конструкции скважины и свойствах материалов, что обеспечивает высокую точность расчетов. Особенностью разработки является возможность индивидуальной настройки каждого термокейса с учетом вероятности дефектов, что позволяет оценивать тепловые процессы в условиях реальной эксплуатации.


Разработка особенно важна для месторождений со сложными мерзлотными условиями, где инженерная ошибка может привести к многомиллионным убыткам и серьезному экологическому ущербу. Внедрение модели позволит повысить эффективность добычи, снизить энергозатраты, увеличить межремонтный период скважин и предотвратить аварии, связанные с оттаиванием мерзлых пород. Гибкость и масштабируемость решения позволяют применять его для различных типов скважин.

Источник:

https://pstu.ru/news/2025/11/20/18015/